HOME      •      SEARCH      •      EMAIL    •     ABOUT


Family Rutaceae
Kayetana
Zanthoxylum rhetsa (Roxb.) DC.
IVY-RUE

Lai ta hua jiao

Scientific names Common names
Fagara rhetsa Roxb. Kasabang (Ilk.)
Tipalia limonella Dennst.                                 Unresolved Kasalang (Sbl.)
Zanthoxylum limonella (Dennst.) Alston        Unresolved Kayatena (Tag.)
Zanthoxylum oblongum Wall.                          Unresolved Kaytana (Tag.)
Zanthoxylum rhetsa (Roxb.) DC.                     Unresolved Kayutana (Tag.)
Zanthoxylum budrugna Wall.    ?                     Unresolved Sarai (P. Bis.)
  Salai (Bis.)
  Cabrit (Engl.)
  Indian ivy-rue (Engl.)
  Indian pepper (Engl.)
  Indian pepper (Engl.)
Zanthoxylum rhetsa DC. is an unresolved name The Plant List

Other vernacular names
ASSAMESE: Bajar mali.
BURMESE: Chyinbawng, Hmekaung, Jang bawng, Jingbawng, Kathit pyu, Kathit su, Ma yanin kyetsu.
CHINESE: Lai ta hua jiao, Hi jiao mu.
FRENCH: Clavalier de l'Inde.
HINDI: Badrang, Mullilam, Pepuli, Tilfda.
INDIA: Tirphal.
KANNADA: Aramadala, Arempala, Juminam, Jummi mara, Jummina, Kadumenasu, Sessal.
LAOTIAN: Ma khaen.
MALAY: Hantu duri, Kayu lemah (Java), Kaju tanah, Kayu tana.
MALAYALAM: Kaatmurikku, Kothumurikku, Mulliam.
MARATHI: Chirphal, Tirphal, Tisal.
SANSKRIT: Ashvaghra.
SINHALESE: Katu kina.
TAMIL: Kattumurukku, Mullilam.
TELUGU: Rhetsaman.
THAI: Kamchat, Kamchat ton, Luk rat mat, Mat mat, Ma khuang, Ma khwaen, Phrik hom.
VIETNAMESE: Cóc hôi, Hoàng mộc hôi, Sẻn hôi, Vàng me.

Botany
Kayetana is a small or medium-sized tree reaching a height of 20 meters. Branchlets are usually spineless. Bark has prominent conical spines. Leaves are pinnately compound, up to 35 centimeters or more in length, with 8 to 20 pairs of leaflets which are somewhat ovate, 5 to 12 centimeters long, with two sides very unequal, particularly at the base, with a tapering, pointed tip. Flowers are numerous, fairly small, yellowish-white, with a red center, 4-parted, and borne in considerable number on terminal panicles which are about 40 centimeters long. Fruit is solitary, 6 to 8 millimeters in diameter, finely tubercled, and red when ripe. Seeds are somewhat rounded, and bluish-black.

Distribution
- In thickets and forests at low and medium altitudes, from northern Luzon (Cagayan) to Palawan and Mindanao.
- Also reported from India and Sri Lanka to Myanmar, Indo-China, Thailand, Peninsular Malaysia, Java, Moluccas, Sulawesi, and southern Papua New Guinea.

Constituents
- Fruit with peel yields volatile oil, 5.8 % with 90% terpenene (sabinene).
- Seeds contain 29.7 % volatile oil.

- Screening of an ethanolic extract of fruit for secondary metabolites yielded 8 glycosides, 10 flavonoids, 6 essential oils, 5 anthraquinones, 9 bitter principles, 7 coumarins, and 8 terpenoids. (5)
- Preliminary screening of ethanol extracts of spine yielded alkaloid, terpenoid, catechin, coumarin, tannin, flavonoid, phenol, xanthoprotein, sugar, and fixed oil. (10)
- The ash values of stem spine of Z. rhetsa is 4.42%; ash value is indicative of the impurities present in the drug. (10)
- Phytochemical screening of methanol extract of leaves yielded flavanoids, glycosides, tannins, saponins, terpenes, steroids, and anthocyanins. (see study below) (11)
- Essential oil of pericarp yielded terpinen-4-ol (25.43%), sabinene (16.50%), β-pinene (10.4%), α-Terpineol (7.63%), γ-Terpinene (5.64%), α-pinene (4.33%), and linalool (3.25%). (see study below) (20)
- Study of seed fatty acid content and fixed oil composition showed 19.5% crude fixed oil on DW basis. Ten fatty acids were identified; the major monounsaturated and saturated fatty acids were oleic acid (41.6-43.5%) and palmitic acid (26.8-30.2%) respectively, while polyunsaturated fatty acids were α-linolenic acid (12.1-12.5%) and linoleic acid (10.0%). Also identified were stearic acid (5.2-6.0%), myristic acid (0.1%), and traces of pentadecanoic, heptadecanoic and arachidic acid. (see study below) (21)
- Phytochemical screening of leaf extract yielded flavonoids, terpenoids, and tannins. (see study below) (23)
- Study of volatile oil of seed coat yielded 34 compounds. The major compounds were terpinen-4-ol (32.1%), α-terpineol (8.2%), sabinene (8.1%), β-phellandrene (7.4%) and 2-undecanone (7.1%). (24)

Properties
- Fruit is considered stimulant, astringent, aromatic, digestive.
- Bark considered aromatic and aphrodisiac.
- Essential oil from fruits a locally anesthetic.
- Studies have shown analgesic, antidiarrheal, antidiabetic, antispasmodic, anti-inflammatory, and diuretic properties.

Parts used
Bark, roots, fruit.

Uses

Folkloric
- Bark, pounded and mixed with oil, used externally as remedy for stomach pains.
- Decoction of bark taken internally for chest pains.
- Bark chewed and applied to snake bites.
- Fruit used for urinary complaints and dyspepsia caused by atrabilis (the melancholic "humor"). Also used in some forms of diarrhea.
- Bark is considered a bitter aromatic and aphrodisiac.
- Fruit, mixed with honey, taken for rheumatism.
- In Goa, root bark used as purgative for kidneys.
- Essential oil used for cholera.
- Plant used by Aka tribes of Arunachal Pradesh, India, for diarrhea. Also used as anti-inflammatory and fish poisoning. For labor pains and after delivery, dry fruits and fried in a hot plate and taken with warmed Tsii (locally made rice beer). (15)
- Adi tribes of lower Digang Valley of Arunachal Pradesh, India, use boiled or steam leaves for the treatment of warts and jaundice. (16)
- In India, traditionally used in diabetes and inflammation; as antispasmodic, diuretic and anti-inflammatory.
- Naga tribes of India use the plant as deworming remedy.
- The Kanikkar tribe in Tamil Nadu prepare a paste of the plant by rubbing the hard spines on rock along with water and apply it on the breast for relief of pain and to increase lactation in nursing mothers. (10)
- Paste prepared by rubbing the hard spines on rock and water is applied to breasts to relieve pain and increase lactation in nursing mothers.


Studies
Antiparasitism:
Study investigated the efficacy of Z. rhetsa leaf extract against experimental Hymenolepsis diminuta infections in albino rats. The efficacy of the extract was moderate against immature and adult stages of parasite. Results suggest the leaves of ZR possess significant anticestodal property and supports its use in folk medicine. (1)
Bark Constituents: Study of bark spines yielded dodecanoic acid, 9,12,octadecanoic acid, oleic acid, octadecanoic acid, 2-hydoxyl-1,3-propanediyl ester, and 1,2-benzenedicarboxylic acid, diisooctylester - phytochemicals that showed various properties: antioxidant, antimicrobial, larvicidal, anti-inflammatory and anti-arthritic. (2)
Essential Oil / Antibacterial: Essential oil steam distilled from aqueous, alkaline, and acidic media showed significant antibacterial activity against S. aureus, E. coli, P. vulgaris and K. pneumonia probably due to synergistic effect of the components present in the oil. The acid distilled essential oil can be used as a potential external antiseptic and incorporated into drug formulations. (3)
Secondary Metabolites: An ethanolic extract of fruit yielded 8 glycosides, 10 flavonoids, 6 essential oils, 5 anthraquinones, 9 bitter principles, 7 coumarins, and 8 terpenoids. (5)
Antinociceptive / Anti-Diarrheal: A methanol extract of stem bark significantly reduced abdominal contraction induced by acetic acid and diarrheal episodes induced by castor oil in mice. (7)
Anticestodal / Anti-Diarrheal: A leaf extract was investigated against experimental Hymenolepis diminuta (Cestoda) infections in albino rats. The extract exhibited moderate efficacy against immature and adult stages of the parasite. The anticestodal property supports its use in folk medicine. (8)
Sunscreen Activity / Seed: Study evaluated the formulation of a sunscreen lotion using a methanolic extract of ZR seed. Evaluation of sunscreen activity using in vitro SPF method showed the formulation to be 1.09 with an ultra boot star rating 2 which approaches toward sunscreen activity. (9)
Pharmacogonostical Study of Spine: Study attempts a modest comprehensive investigation of the stem spines of Zanthoxylum rhetsa. Various extracts of stem spines yielded alkaloid, catechin, coumarin, flavonoid, phenol, quinone, steroid, tannin terpenoid, sugar, glycoside, xanthoprotein, and fixed oil. Ash value is 4.41%—ash value are constant for a given drug, and generally the index of purity as well as identity of the drug. The pharmacognostic studies include microscopic, physicochemical constants (ash & extractive values), fluorescence analysis and preliminary phytochemical evaluations. (10)
Antidiabetic / Leaves: Study evaluated the hypoglycemic effects of an aqueous methanolic extract of Zanthoxylum rhetsa leaves. Phytochemical screening yielded flavanoids, glycosides, tannins, saponins, terpenes, steroids, and anthocyanins. (see study below). Study suggests a vital role for Z. rhetsa leaves in diabetic healing. (11)
Anti-Inflammatory / Inhibition of LPS-Induced COX-2 and iNOS Expression: Study evaluated a methanol extract of ZR for its ability to suppress the formation of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2) in LPS-activated RAW 264.7 macrophages. The production of tumor necrosis factor-α (TNF-α), the mRNA expression of pro-inflammatory cytokines, including TNF-a and IL-1ß, were dose dependently reduced by MZRR extract. Results suggest the extract's involvement in the inhibition of iNOS and COX-3 via the NF-kB pathway, a partial molecular basis for its anti-inflammatory effect. (12)
Antibacterial / Stem and Roots: Study evaluated the antibacterial properties of root, stem, and bark of Zanthoxylum rhetsa. Alcoholic and acetone extracts of bark and stem showed antibacterial properties against Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium, Bacillus megatarium and Escherichia coli. Roots showed less antibacterial properties than bark and stem. (13)
Antioxidant / Aerial Parts: Study investigated the invitro antioxidant activity of Z. rhetsa by DPPH and ABTS radical scavenging methods. Ethyl acetate, methanol, and water extracts showed significant DPPH and ABTS free radical scavenging activity. Methanol extract showed the highest amount of phenolic and flavonoid contents. (14)
Haemostatic Activity: Indian herbs have been traditionally used for wound healing and controlling hemorrhage from cuts and bruises. In a screening study of ten Indian medicinal plants, a petroleium ether extract was one of the the plants that showed haemostatic activity. (19)
Antinociceptive / Antioxidant / Seeds : Study evaluated the antinociceptive and antioxidant potential o an ethanol extract of Z. budrunga seeds. In hot-plate test, ZB seed extract raise the pain threshold significantly. In DPPH scavenging assay, IC50 was observed at 82.60 µg/mL. Phenolic content was 338.77 mg GAE/100g of dried plant material. Caffeic acid and other phenolics may play a role in the observed activity. (18)
Antidiarrheal / Antispasmolytic / Pericarp Essential Oil : Study of essential oil, its fractions and terpinen-4-ol exhibited appreciable antioxidant, antibacterial, antidiarrheal and non-selective spasmolytic activity. The active component terpinen-4-ol has a high potential in the treatment of stress and gastrointestinal diseases. (see constituents above) (20)
Seed Oil Composition / Radical Scavenging Activity / Inhibition of GI Motility: Study evaluated seed fatty acid content and fixed oil composition. Fixed oil exhibited significant free radical scavenging activity and significant inhibition of gastrointestinal motility. (see constituents above) (21)
Antihyperglycemic / Antihyperlipidemic / Antioxidant: Study of methanolic and aqueous extracts of Z. rhetsa bark in streptozotocin induced diabetic rats showed potent antihyperglycemic, antihyperlipidemic and antioxidant activity. (22)
Thrombolytic / Leaves: Study evaluated the thrombolytic activity of a methanolic extract of Z. rhetsa leaves. Results showed significant thrombolytic activity 25.23 ±0.04% compared with maximum effect of Streptokinase 66.978 ±0.11. (23)
Anthelmintic / Leaves: Studies on leaf extract have shown a high degree of efficacy against larval stage in H. diminuta rat model and moderate level of efficacy against immature and adult stages of tapeworm. (25)

Availability
Wild-crafted.
Essential oil in the cybermarket.

Godofredo U. Stuart Jr., M.D.

Last Update January 2015

IMAGE SOURCE: Photo / Zanthoxylum piperitum leaves ja01.jpg / Miya / 2004.5.2 / Creative Commons / Wikimedia Commons
OTHER IMAGE SOURCE: / Illustration /Zanthoxylum rhetsa DC. [as mouli-ilá] Rheede tot Drakestein, Hendrik van, Hortus Indicus Malabaricus, vol. 5: t. 34 (1685) / Illustration contributed by the library of the Missouri Botanical Garden, U.S.A. / PlantIllustrations.org
OTHER IMAGE SOURCE: Bark with conical spines / Zanthoxylum rhetsa (Roxb.) DC. / Asean Tropical Plant Database

Additional Sources and Suggested Readings
(1)
Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats / Arun K Yadav and Vareishang Tangpu / JOURNAL OF PARASITIC DISEASES, Vol 33, Numbers 1-2, 42-47, DOI: 10.1007/s12639-009-0007-2
(2)
GC-MS ANALYSIS OF ETHANOLIC EXTRACT OF ZANTHOXYLUM RHETSA (ROXB.) DC SPINES / Suresh Lalitharani, Veerabahu Ramasamy Mohan et al / Journal of Herbal Medicine and Toxicology 4 (1) 191-192 (2010)
(3)
Statistical analysis of the antibacterial activity of Zanthoxylum rhetsa seed essential oil / L Joji Reddy and Beena Jose / J. Chem. Pharm. Res., 2011, 3(1):440-444
(4)
Sorting Zanthoxylum names / Authorised by Prof. Snow Barlow / Maintained by: Michel H. Porcher / MULTILINGUAL MULTISCRIPT PLANT NAME DATABASE / Copyright © 1997 - 2000 The University of Melbourne.
(5)
Chemical profile studies on the secondary metabolites of medicinally important plant Zanthoxylum rhetsa (Roxb.) DC using HPTLC / Priya Alphonso and Aparna Saraf* / Asian Pacific Journal of Tropical Biomedicine (2012)S1293-S1298
(6)
Study of antibacterial activity of Essential Oil components obtained from pericarp of Zanthoxylum rhetsa (Indian origin) using HS-GCMS / Shimadzu, Excellence in Science
(7)
Antinociceptive and antidiarrhoeal activity of Zanthoxylum rhetsa. / M T Rahman, M Alimuzzaman, S Ahmad, A Asad Chowdhury / Fitoterapia, 08/2002; 73(4):340-2.
(8)
Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats / Arun K. Yadav, Vareishang Tangpu / Journal of Parasitic Diseases, December 2009, Volume 33, Issue 1-2, pp 42-47
(9)
Formulation and In-Vitro Evaluation of Sun Protection Factor of Methanolic Extract of Zanthoxylum rhetsa DC. Sunscreen lotion. / Kale Shantanu S.*, Rajmane Amol H., Urunkar Vaibhav C., Gaikwad Megha K., Bhandare Snehal B. / Research Journal of Pharmacognosy and Phytochemistry, 2011, Volume 3, Issue 5.
(10)
PHARMACOGNOSTIC STUDIES ON THE SPINE OF ZANTHOXYLUM RHETSA (ROXB.)DC./ Lalitharani S, Kalpanadevi V and Mohan V R / Bioscience Discovery, 4(1):05-11, Jan. 2013
11)
Assessment of Bioactive compound in Zanthoxylum rhetsa (Roxb) - A rare medicinal herb / Prabhash T, S. Alagendran*, D. ArulBalachandran and A. Anthonisamy / Int. J.Cur. Tr. Res (2014) 3 (2):77-83
(12)
Zanthoxylum rhetsa Stem Bark Extract Inhibits LPS-induced COX-2 and iNOS expression in RAW 264.7 Cells via the NF-κB Inactivation / Nguyen Bich Thu, Trinh Nam Trung, Do Thi Ha, Nguyen Minh Khoi, Nguyen Viet Than, Thipthaviphone Soulinho, Nguyen Hai Nam, Tran Thi Phuong, and KiHwan Bae* / Natural Product Sciences 16(4) : 265-270 (2010)
(13)
In vitro anti bacterial properties of Zanthoxylum rhetsa (Roxb) DC / Nagaraja T. G., Patil Vd. Lashmikant, Gramopadhye N. G. / BIOINFOLET - A Quarterly Journal of Life Sciences, 2011, Volume : 8, Issue : 1
(14)
Evaluation of In-Vitro Antioxidant, Anti-inflammatory Properties of Aerial Parts of Zanthoxylum rhesta /
Vidyamadhavi K, Chandrashekhar G Joshi*, Manjunath Hullikere M, Nivya MT, Anand D, and Raju NG / Research Journal of Pharmaceutical, Biological and Chemical Sciencesm 5(5), 2014
(15)
Ethno-medicines of Aka tribe, West Kameng District, Arunachal Pradesh (India) / Gibji Nimachow, J S Rawat, A. Arunachalam, and Oyi Dai / Sci. and Cult. 77 (3–4) 149-155 (2011)
(16)
Ethnomedicinal Knowledge Among the Adi Tribes of Lower Dibang Valley District of Arunachal Pradesh, India / Nimasow Gibji, Nguok Ringu and Nimasow Oyi Dai / International Research Journal of Pharmacy, 2012, 3(6)
(17)
Zanthoxylum rhetsa DC / Synonyms / The Plant List
(18)
Antinociceptive and Antioxidant Activity of Zanthoxylum budrunga Wall (Rutaceae) Seeds / Md. Khirul Islam, Nripendra Nath Biswas, Sanjib Saha et al / The Scientific World Journal, Vol 2014 (2014), Article ID 869537 / http://dx.doi.org/10.1155/2014/869537
(19)
SCREENING OF INDIAN HERBS FOR HAEMOSTATIC ACTIVITY / *Jadhav Shital, Kulkarni Chitrarekha, Salunkhe Satyajeet, Deshpande Adwait, Bhise Satish /
Journal of Drug Delivery & Therapeutics; 2013, 3(5), 81-85
(20)
GC-MS Analysis and Biological Evaluation of Essential Oil of Zanthoxylum Rhesta (Roxb.) DC Pericarp
/
Rajashri R. Naik, Ashok K. Shakya, Nooman A. Khalaf, Sawsan Abuhamdah, Galib A. Oriquat, Anwar Maraqa / Jordan Journal of Parmaceutical Services, Vol 8, No 3 (2015)
(21)
GC-FID analysis of fatty acids and biological activity of Zanthoxylum rhetsa seed oil / Rajashri R. Naik / Oriental Journal of Chemistry, Volume 31, Number 4 / DOI : http://dx.doi.org/10.13005/ojc/310409
(22)
Evaluation of Zanthoxylum Rhetsa (Roxb.) bark extract on hyperglycemia and hyperlipidemia in streptozotocin- induced rats / Ankur C Patel, Preeti V Kulkarni, S.T.Shukla, Ventatrao H Kulkarni. / Spatula DD. 2015; 5(1): 51-67 / doi: 10.5455/spatula.20150616062535
(23)
Phytochemical Screenining and in-Vitro Thrombolytic Activity of Methanolic Leaf Extract of Zanthoxylum rhetsa (Roxb.) / Azad, Md A K; Islam, Md Ahinul; Rima, Emratunnesa; Islam, Md Mohaiminul; Khatun, Chand Sultana; Nesa, Jeb-Un; Ahmed, Firoj / Journal of Pharmaceutical Sciences and Research
(24)
Volatile Constituents of the Seed Coat of Zanthoxylum rhetsa (Roxb.) DC.
/ V. S. Rana & M. Amparo Blazquez / Journal of Essential Oil Research, Volume 22, Issue 5, 2010 / DOI:10.1080/10412905.2010.9700364
(25)
PHYTOCHEMICALS AS CURE OF WORM INFECTIONS IN TRADITIONAL MEDICINE SYSTEMS / V. Tandon, A. K. Yadav, B. Roy and B. Das / Emerging Trends in Zoology, Pages 351–378

It is not uncommon for links on studies/sources to change. Copying and pasting the information on the search window or using the DOI (if available) will often redirect to the new link page.

HOME      •      SEARCH      •      EMAIL    •     ABOUT