HOME      •      SEARCH      •      EMAIL    •     ABOUT

Family Asteraceae / Compositae
Sphagneticola trilobata (L.) Pruski

Di jin hua

Scientific names  Common names 
Acmella brasiliensis Spreng. Creeping oxeye (Eng.)
Acmella spilanthoides Cass. Creeping wedelia (Engl.)
Buphthalmum procumbens Desf. ex Steud. Creeping daisy (Engl.)
Buphthalmum procumbens Desf. Gold cup (Engl.)
Buphthalmum repens Lam. Rabbit's paw (Engl.)
Buphthalmum strigosum Spreng. Trailing daisy (Engl.)
Complaya trilobata (L.) Strother Water zinnia (Engl.)
Polymnia carnosa (Rich) Poir.              [Illegitimate] Wedelia (Engl.)
Polymnia crenata (Rich) Poir.  Wild marigold (Engl.)
Seruneum trilobatum (L.) Kuntze  Yellow dots (Engl.)
Silphium trilobatum L.  
Stemmodontia carnosa (Rich.) O.F.Cook & G.N.Collins  
Thelechitonia trilobata (L.) H.Rob. & Cuatrec.   
Verbesina carnosa (Rich.) M.Gomez   
Verbesina tridentata Spreng.  
Wedelia brasiliensis (Spreng.) S.F.Blake  
Wedelia carnosa Rich.                    [Illegitimate]  
Wedelia paludicola Poepp.   
Wedelia paludosa DC.   
Wedelia triloba (Rich. ex DC.) Belio.  
Wedelia trilobata A.St.-Hil.  
Wedelia trilobata (L.) Hitchc.  
Sphagneticola trilobata (L.) Pruski is an accepted name. The Plant List

Other vernacular names
BRAZIL: Arnica do mato, Vedelia.
CHINESE: Di jin hua.
GERMANY: Hansenfuss.
JAPAN: America hama-guruma.
MALAYSIA: Wedelia kuning.
SWEDEN: Ampelkrage.
THAI: Kra dum tong.

Gen info
- Although known officially as Sphagneticola trilobata, its is commonly referred to by its former name, Wedelia trilobata.
- Genus
Wedelia, named in honor of Georg Wolfgang Wedel (1645-1721), has about 70 species of tropical and subtropical regions.   (9)

A creeping, succulent mat-forming perennial herb, with rounded stems rooting at the nodes. Stems are rounded, green or reddish, occasionally coarsely hairy. Leaves are opposite, ovate, dentate, shallowly or deeply 3-cleft, glossy and green, irregularly toothed, sessile or borne on short stalks. Flowers are daisy-like, golden yellow, 2 centimeters across, borne singly at the end of the stem. Each flower head has 8 to 13 yellowish petals, with 1 to 3 finely toothed tips. At the center of the flower heads, there are numerous tiny yellow tubular disc florets, 4 to 5 millimeters long. Fruit is a 2- to 4-angled achene.
- Phytochemical analysis of methanol and chloroform extracts of flower yielded cardiac glycosides (M++ C+), steroids (M+C+), flavonoids (M+), saponin (M+), tannins (M+), terpenoids (M+C+), alkaloids (M+). (14)

- Introduced.
- Rare cultivation.
- Makes an excellent and decorative ground cover.

- Native to Mexico, Central America, and throughout the Caribbean. Escaped in many tropical regions including Australia, Pacific Islands, Malaysia, Indonesia, Thailand, India, Papua New Guinea. (9)

• Study isolated main bioactive sesquiterpene lactones, trilobolid-6-O-isobutyrates A and B.
• From the flower, the structure of trilobolide-6-O-isobytyrate shows a eudesmanolide sesquiterpene skeleton.
• Contains the diterpene (kaurenoic acid), eudesmanolide lactones and luteolin (in leaves and stems.
• Major classes of phytoconstituents in the plant include tannin, saponins, flavonoids, phenol, terpenoids. It contains high amount of diterpene, eudesmanolide lactones, and luteolin. (9)
• GC-MS analysis of leaves for essential oil yielded aα-pinene (>30%), α-phellandrene (17.4%) and limonene (16.3%) as major components. (9)
• Study of leaves, stems, and flowers for essential oil yielded a high percentage of hydrocarbon sesquiterpenes (25.5-86.4%), hydrocarbon monoterpenes (22.9-72.3%) and low levels of oxygenated sesquiterpenes (0.0-7.4%). Major components of volatile oils were germacrene D (11.9-35.8%),
α-phellandrene (1.4-28.5%), α-pinene (7.3-23.8%), E-caryophyllene (4.6-19.0%), bicyclogermacrene (6.0-17.0%), limonene (1.8-15.1%), and α-humulene (4.0-11.6%). (9)
- Qualitative phytochemical screening of powdered leaves, stems, and roots using four solvents viz. ethanol, pethroleum ether, chloroform and water yielded alkaloids, flavonoids, saponins, terpenoids, steroids, glycosides, tannins, proteins, aminoacids and carbohydrates. More phytochemicals were found in extracts prepared by ethanol. (12)
- Hydrodillation of leaves for essential oil had percentage yield of 0.21 ± 0.01% (v/w) with a total of 112 chemical compounds representing 62$ of the total oil by GC-MS. Main bioactive constituents were monoterpenes, α-pinene (19.5%), α-phellandrene (7.4%), limonene (3.6%), oxazine (3.3%), and ß-pinene (3.1%). (see study below) (16)

• Studies have suggest analgesic, antimicrbial, anti-inflammatory properties.

Parts utilized
Leaves, flowers.

• No reported folkloric medicinal use in the Philippines.
• In Trinidad and Tobago, used for reproductive problems, amenorrhea, dysmenorrhea.
• In South America, used to treat symptoms of colds and flu; for fevers and inflammations.

• In Caribbean and Central Americatraditional medicine, used for bronchitis, colds, abdominal pains, dysmenorrhea and as fertility enhancer. (9)
• In Nicaragua, Miskito Indians use leaves for treatment of kidney problems, colds, stingray wounds, snakebite, amenorrhea. (9)
- Fruits, leaves, and stems used in childbirth and for treatment of bites, stings, fever and infection. In Vietnam used for treatment of fever and malaria. (9)
• In the Dominican Republic, used for the treatment of menorrhagia.

• In Guyana, strong decoction used for treatment of severe chest colds. Tea or syrup mixed with Lantana camara used for colds. Mixture of boiled leaves with Commeline nudiflora or Hibiscus sabdariffa used for treatment of cough and colds. (10)
• In Saint Lucia, women drink tea of S. trilobata after childbirth to contract the uterus and stop hemorrhage. As herbal tea, the plant is used for pinched nerves: plant is pounded and mixed with spoon of castor oil and applied. (25)

Anti-inflammatory / Leavss: Study evaluated four Central American herbal drugs used in traditional medicine, including Sphagneticola trilobata leaves, for the anti-inflammatory activity. All the extracts reduced croton oil-induced ear dermatitis. Results suggest the lipophilic extracts to be potential sources of antiinflammatory activity. (3)
Antimicrobial: A study of the n-hexane extract of Wedelia trilobata showed antibacterial activity against Bacilus subtilis, Mycobacterium smegmatis, Pseudomonas aeruginosa, Salmonella group C, S paratyphi and Shigella sonnei.
Analgesic: Study in mice on the analgesic activity of the ethanol extracts of W trilobata, W bilofra and E alba showed dose-dependent blocking of writhing response. The ethanol extract of W. trilobata blocked writhing response by 49.17% compared to aspirin at 68,68%. (6)
Wound Healing / Antioxidant / Leaves: Study evaluated the wound healing potential of extract of Wedelia trilobata leaves. An ethyl acetate fraction promoted fibroblast L929 survivability up to more than 90% before and more than 85% after hydrogen peroxide induced oxidative stress. A chloroform methanol extract exhiibited DPPH scavenging activity with IC50 of 179.5 µg/mL comparable to BHT at 139.3 µg/mL. The EA fraction was active against gram positive Staphylococcus aureus and S. epidermis with MICs of 62.5 and 31.25 µg/mL, respectively. (8)
Topical Anti-Inflammatory / Dried Aerial Parts: Study evaluated polar compounds of S. trilobata extracts to develop a topical phytomedicine based on kaurenoic acid (KA) and its anti-inflammatory activity on ear edema induced by croton oil. A semisolid formulation containing 1.0% of dried extract reduced the ear edema. The anti-inflammatory effects were, at least in part, due to interference in protein kinase (PKC) activation, AA-cascade products and neutrophil migration inhibition. Results suggest a potential for development of novel topical anti-inflammatory medicine for treatment of inflammatory dermatologic diseases. (11)
Attenuation of STZ-Induced Hyperglycemia / Modulation of Oxidative Stress: Study showed S. trilobata treatment of male albino rats with STZ-induced diabetes.reduced blood glucose and improved weight gain along with marked restoration of decreased vitamin C and reduced glutathione in liver and kidney tissues. In vitro data showed S. trilobata inhibited lipid peroxidation. Study suggests empirical use of S. trilobata in folkloric medicine may have some scientific justification. (13)
Acute Toxicity Study / Leaves: Study evaluated the acute toxicity of 80% ethanolic leaf extract from S. trilobata in Wistar rats. Results showd the leaf extract has no acute toxicity with LD50 higher than 2000 mg/kg. It is safe for use in traditional medicine or complementary diet without any effect on hepatic and renal function. (15)
Antibacterial / Antioxidant / Essential Oil / Leaves: Study evaluated the antibacterial activity of hydrodistilled essential oil from W. trilobata leaves against Propionibacterium granulosum. A total of 112 chemical components were present in the EO. The EO showed moderate antioxidant capacity on DPPH assat and exhibited anti- P. granulosum activity from inhibition zone in disc diffusion method. The MIC was 595 ± 206 µg/ml and MBC 1191 ± 413 µg/ml of the EO were higher than commercial clindamycin gel 1.30 µg/ml and 2.61 µg/ml, respectively, and commercial benzoyl peroxide gel 52 and 104, respectively. (see constituents above) (16)
Antioxidant / Roots: The excessive production of free radicals during metaboic processes disrupt antioxidant defense mechanisms, which lead to oxidative stress and attendant molecular DNA damage and increased lipid peroxidation of biomembranes. Oxidative stress increases lipid peroxidation in terms of MDA and alters activity of the glutathione system and antioxidant enzymes GST, GPx, SOD, and CAT. This study evaluated the antioxidant property of methanol and chloroform root extracts of S. trilobata Results showed treatment restored antioxidant activity. The chloroform root extract was more effective than than methanoic root extract. (17)
Antimicrobial Diterpenoids: Study isolated 26 ent-kaurane diterpenoids, including seven new ones (1-7). All the isolated diterpenoids were evaluated for antimicrobial activities against a panel of bacteria and fungi viz. P. aeruginosa, S. aureus, Monilia albicans and E. coli. (18)
Grandiflorenic Acid / Wound Healing / Leaves: Study of ethyl acetate frction from ethanolic extract of W. trilobata leaves isolated grandiflorenic acid and was evaluated for wound healing potential. Results showed grandiflorenic acid has potential wound healing activity by combination of fibroblast stimulation and inhibition of the prolonged inflammatory phase of wound healing as evidenced by reduced levels of inflammatory cytokines from macrophages Raw264.7 cells. (19)
Chronic Toxicity Study / Leaves: Study evaluated the chronic toxicity of 80% ethanolic leaf extract of S. trilobata in healthy Wistar rats daily for 90 days at doses of 200 or 400 mg/kbw orally. . The leaf extract did not produce any signs or symptoms of chronic toxicity, with no alteration in body weight, relative organ weight, hematologic and biochemical parameters, along with histological features of liver, pancrease and kidneys. (20)
Analgesic Activity / Kaurenoic Acid: Kaurenoic acid [ent-kaur-16-en-19-oic acid] (1) is a diterpene present in Sphagneticla trilobata. Its antinociceptive effect was shown by inhibition of writhing response induced by acetic acid in mice. Study investigated the analgesic effect of kaurenoic acid in different models of pain in mice. Intraperitoneal and oral treatment with kaurenoic acid dose-dependently inhibited inflammatory nociception induced by acetic acid. Study demonstrated compounf 1 exhibits analgesic effect in a consistent manner with mechanisms involving inhibition of cytokine production and activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway. (21)
Antidiabetic / Antihypertensive: Study investigated the antidiabetic and antiypertensive activity of 10 ethnobotanically known plants of Asteraceae using in vitro glucose diffusion, a-amylase, a-glucosidase, ad angiotensin-1 converting enzyme (ACE) inhibition methods. Wedeli
a trilobata showed inhibition of a-amylase and a-glucosidase enzymes responsible for breakdown of oligosaccharides into monosaccharides. It inhibited a-amylase with IC50 of 40 µg/ml and 75% inhibition of a-glucosidase enzyme at a concentration of 50 µg/ml. W. trilobata inhibited rabbit lung angiotensin-1 converting enzyme with IC50 of 30 µg/ml. (22)
Silver Nanoparticles / Antibacterial / Flowers: Study reports on the eco-friendly and green synthesis of silver nanoparticles using flower extracts of Sphagneticola trilobata. Phytochemical analysis of the flower extracts yielded flavonoids, alkaloids, cardiac glycosides, and saponins. The synthesized AgNPs exhibited good antibacterial activity against E. coli, Klebsiella aerogenes, S. aureus and Pseudomonas aeruginosa. (24)

- Wild-crafted.

April 2020

Photos © Godofredo Stuart / StuartXchange

Additional Sources and Suggested Readings
Simultaneous Determination of Trilobolide-6-O-Isobutyrates A and B in Wedelia trilobata by Gas Chromatography / Xuesong HUANG et al / Chinese Journal of Chromatography • Volume 24, Issue 5, September 2006, Pages 499-502 / doi:10.1016/S1872-2059(06)60021-7
Validation of plants used for reproductive problems in Trinidad and Tobago / Journ of Ethnobiology and Ethnomedicine • 2007; 3: 13./ doi: 10.1186/1746-4269-3-13.
Screening of the topical anti-inflammatory activity of the bark of Acacia cornigera Willdenow, Byrsonima crassifolia Kunth, Sweetia panamensis Yakovlev and the leaves of Sphagneticola trilobata Hitchcock / M Maldini, S Sosa, P Montoro et al / Journal of Ethnopharmacology • Volume 122, Issue 3, 21 April 2009, Pages 430-433 / doi:10.1016/j.jep.2009.02.002
Antimicrobial activity of Wedelia trilobata crude extracts / A Taddei and A J Rosas-Romero / Phytomedicine 6(2):133-4 (1999)

Trilobolide-6-O-isobutyrate, a eudesmanolide from Wedelia trilobata / X S Huang et al / Acta Cryst. (2003). E59, o771-o772 [ doi:10.1107/S1600536803009590 ]
Analgesic activities of the medicinal plants of Wedelia trilobata, Wedelia biflora and Eclipta alba in standard experimental animal models / S Sureshkumar, S Bhama et al / Biosciences, Biotechnology Research Asia, 4(1)
Sphagneticola trilobata / Synonyms / The Plant List

Evaluation of the wound healing potential of Wedelia trilobata (L.) leaves. / Balekar N, Katkam N G, Nakpheng T, Jehtae K, Srichana T / J Ethnopharmacol., June 2012; 141(3): pp 817-824 / doi: 10.1016/j.jep.2012.03.019.
Wedelia trilobata L.: A Phytochemical and Pharmacological Review / Neelam Balekar [a,b], Titpawan Nakpheng and Teerapol Srichana / Chiang Mai J. Sci., 2014; 41(3): pp 590-605 / http://epg.science.cmu.ac.th/ejournal/
Medicinal Plants of the Guianas (Guyana, Surinam, French Guiana)
Topical anti-inflammatory phytomedicine based on Sphagneticola trilobata dried extracts / Giovana Fucina, Lilian Wünsch Rocha, Gislaine Francieli da Silva, Silmara Mendes Hoepers, Fernanda Peres Ferreira, Thais Guaratini / Journal of Pharmaceutical Biology, 2016; 54(11) / https://doi.org/10.3109/13880209.2016.1160249
Primary phytochemical investigation of Sphagneticola trilobata (L.) Puruski
/ Sushama Raj RV / Journal of Pharmacognosy and Phytochemistry, 2019; 8(1): pp 968-971
Aqueous extracts of Sphagneticola trilobata attenuates streptozotocin-induced hyperglycaemia in rat models by modulating oxidative stress parameters / IJ Kade, NBV Barbosa, EO Ibukun, AP Igbakin, CW Nogueira, JBT Rocha / Biology and Medicine, 2010; 2(3): pp 1-13
Comparative Study of Phytochemical Constituents in Flower of Wedelia trilobata, Achyranthes aspera and Chrysanthemum from Durg District of Chhattisgarh, India / Nisreen Husain and Anil Kumar / Int.J.Curr.Microbiol.App.Sci., 2015; 4(4): pp 150-156
Acute toxicity of leaf extracts from sphagneticola trilobata (L.) pruski in rats / Areeya Suchantabud, Teeraporn Katisart, Chusri Talubmook / 2015 International Conference on Science and Technology, 4-6 Nov 2015 / (TICST) / DOI:  10.1109/TICST.2015.7369353
Antibacterial activity of essential oil from Wedelia trilobata leaves against Propionibacterium granulosum / Nuttakorn Baisaeng, Rungthip Kawaree, Anthika Boonma, Jariya Sadnen, Sunisa Khamkaew, Srikanjana Klayraung / ScienceAsia, 2017; 43: pp 275–280 / doi: 10.2306/scienceasia1513-1874.2017.43.275
Antimicrobial Diterpenoids of Wedelia trilobata (L.) Hitchc  / Shi-Fei Li, Jia-Yin Ding, Ya-Ting Li, Xiao-Jiang Hao and Shun Lin Li / Molecules, 2016; 21(4) / https://doi.org/10.3390/molecules21040457
Wound-healing potential of grandiflorenic acid isolated from Wedelia trilobata (L.) leaves / Neelam Balekar,Titpawan Nakpheng, andTeerapol Srichana / Songklanakarin J. Sci. Technol., Sept.- Oct. 2013; 35(5): pp 537-546
Chronic Toxicity of Leaf Extract from Sphagneticola trilobata (L.) Pruski / Areeya Suchantabud, Teeraporn Katisart, Chusri Talubmook / Pharmacognosy Journal, 2017; 9(3): pp 323-328 / DOI:10.5530/pj.2017.3.55
Kaurenoic Acid from Sphagneticola trilobata Inhibits Inflammatory Pain: Effect on Cytokine Production and Activation of the NO–Cyclic GMP–Protein Kinase G–ATP-Sensitive Potassium Channel Signaling Pathway / Sandra S Mizokami, Nilton S Arakaw, Sergio R Ambrosio, Ana C Zarpeion, Waldiceu A Verri Jr et al / J. Nat. Prod. 2012, 75(5): pp 896-904 / https://doi.org/10.1021/np200989t
Antidiabetic and Antihypertensive Potential of Selected Asteraceae Plant Species  / Chethan J, Pradeep Kumar P M and Prakash H S / American Journal of Advanced Drug Delivery, 2014; 2(3): pp 355-363
GC-MS based metabolomics and multivariate statistical analysis of Wedelia trilobata extracts for the identification of potential phytochemical properties / Kamalrul Azlan Azizan, Nurul Haizun Abdul Ghani, Mohammad Firdaus Nawawi / POJ, 2015; 8(6): pp 537-543
ECO-FRIENDLY APPROACH FOR THE GREEN SYNTHESIS OF SILVER NANOPARTICLES USING FLOWER EXTRACTS OF SPHAGNETICOLA TRILOBATA AND STUDY OF ANTIBACTERIAL ACTIVITY / Vinay.S. P, Chandrasekhar.N and Chandrappa .C. P / International Journal of Pharmacy and Biological Sciences, April-June 2017; 7(2): pp 145-152




It is not uncommon for links on studies/sources to change. Copying and pasting the information on the search window or using the DOI (if available) will often redirect to the new link page. (Citing and Using a (DOI) Digital Object Identifier)

                                                            List of Understudied Philippine Medicinal Plants

HOME      •      SEARCH      •      EMAIL    •     ABOUT